标签: 多模态
包含标签 "多模态" 的所有文章:
Discrete Tokenization:多模态大模型的关键基石,首个系统化综述发布
发表: at 23:30近年来,大语言模型(LLM)在语言理解、生成和泛化方面取得了突破性进展,并广泛应用于各种文本任务。随着研究的深入,人们开始关注将 LLM 的能力扩展至非文本模态,例如图像、音频、视频、图结构、推荐系统等。这为多模态统一建模带来了机遇,也提出了一个核心挑战:如何将各种模态信号转化为 LLM 可处理的离散表示。在这一背景下,Discrete Tokenization(离散化)逐渐成为关键方案。通过向量量化(Vector Quantization, VQ)等技术,高维连续输入可以被压缩为紧凑的离散 token,不仅实现高效存储与计算,还能与 LLM 原生的 token 机制无缝衔接,从而显著提升跨模态理解、推理与生成的能力。
一文搞懂多模态学习(多模态融合 + 跨模态对齐)
发表: at 13:00多模态学习(Multimodal Learning)是一种通过整合多种数据模态(如文本、图像、音频、视频等)来提升模型对复杂信息的理解能力的技术。其核心目标是利用不同模态的互补性与冗余性,突破单一模态的信息局限,模拟人类多感官协同认知的能力。